

Single stage & Triple driven

• DRIVEN PRINCIPLES

Pumster Air Driven Liquid Pumps are more efficient in energy and are suitable for explosion proof area. Pumster Air Driven Liquid Pumps work on the principle of Pascal's law.

Large surfaces are charged with a low pressure(Air piston) and generate high pressure(High pressure piston) over the small surfaces. The transmission ratio is based on the piston area of the large air piston in relation to that of the smaller high pressure piston.

FEATURES OF PRODUCTS

No requirement for electricity

Suitable for explosion proof area

Oil free; no oil replacement & contamination

Available as a complete packaged system

*

Stay cool when working hard due to a cooling jacket

Liquid pumps

LSS series Single stage & Single driven Specification

Type : LSS type PI – Air driven Inlet Pa – Inlet Pb – Outlet

Part name

- ① Driven section
- ② Silencer
- ③ Flange
- ④ Poppet valve
- ⑤ High pressure cylinder
- [©] Check valve
- ⑦ Spool valve

*Product specification below is standard information and it may different depending on purpose.

Model	LSS-50	LSS-80	LSS-150	LSS-220	LSS-350
Pressure Ratio	1:50	1:80	1:150	1:220	1:350
Min. Operating Pressure (kg/㎡)	5	5	5	5	5
Max. Operating Pressure (kg/㎡)	7	7	7	7	7
Max. pressure (kg/㎝)	350	560	1,050	1,540	2,450
Inlet port (inch)	1/2"PT	1/2"PT	1/2"PT	1/2"PT	1/2"PT
Outlet Port (inch)	1/2"PT	9/16"18UNF	9/16"18UNF	9/16"18UNF	9/16"18UNF
Discharge rate (nl/min)	1.1	0.7	0.4	0.27	0.18
Weight (kg)	12	12	12	12	12

LSS series Performance Graph

1760

Outlet Pressure (bar)

0.36

0.18

0

Theoretical charging time formula Reservoir tank x atm = TAL

TAL x Flow rate/sec=Sec

* Outlet pressure (Pb) = I·PI (Outlet Pressure = Compression ratio · Air drive)

Precautions for inlet liquids pressure

Many variables when increasing pressure under high pressure Driven part - driven air pressure, flow rate High pressure part - inflow air pressure, feed rate Charging flow rate means average flow rate, which could be different on purpose.

Liquid pumps

Type : LSD type Pl – Air driven Inlet Pa – Inlet Pb – Outlet

- Part name
- ① Driven section
- ② Silencer
- ③ Flange
- ④ Poppet valve
- ⑤ High pressure cylinder
- ⑥ Check valve⑦ Spool valve

*Product specification below is standard information and it may different depending on purpose.

Model	LSD-100	LSD-160	LSD-300	LSD-440	LSD-700
Pressure Ratio	1:100	1:160	1:300	1:440	1:700
Min. Operating Pressure (kg/㎡)	5	5	5	5	5
Max. Operating Pressure (kg/㎝)	7	7	7	7	7
Max. pressure (kg/cៅ)	700	1,120	2,100	3,080	4,900
Inlet port (inch)	1/2"PT	1/2"PT	1/2"PT	1/2"PT	1/2"PT
Outlet Port (inch)	1/2"PT	9/16"18UNF	9/16"18UNF	9/16"18UNF	9/16"18UNF
Discharge rate (nl/min)	0.9	0.6	0.3	0.22	0.15
Weight (kg)	17	17	17	17	17

LSD series Performance

Graph

Outlet Pressure (bar)

0.18

0.69

0.57

(iu) 0.45

90.34

0.23

0.11

3960 4400

LSD-700

0 2100 3500 4900 6300 7700 Outlet Pressure (bar)

Theoretical charging time formula Reservoir tank x atm = TAL

TAL x Flow rate/sec=Sec

* Outlet pressure (Pb) = I·PI

(Outlet Pressure = Compression ratio \cdot Air drive)

Precautions for inlet liquids pressure

Many variables when increasing pressure under high pressure
Driven part – driven air pressure, flow rate
High pressure part – inflow air pressure, feed rate
Charging flow rate means average flow rate,
which could be different on purpose.

Liquid pumps

LST series Single stage & Triple driven Specification

*Product specification below is standard information and it may different depending on purpose.

Model	LST-1050
Pressure Ratio	1:1,050
Min. Operating Pressure (kg/㎡)	5
Max. Operating Pressure (kg/㎡)	7
Max. pressure (kg/៣)	7,350
Inlet port (inch)	1/2"PT
Outlet Port (inch)	9/16″18UNF
Discharge rate (nl/min)	0.12
Weight (kg)	25

Type : LST type PI – Air driven Inlet Pa – Inlet

Pb – Outlet

Part name

Driven section

④ Poppet valve

6 Check valve ⑦ Spool valve

⑤ High pressure cylinder

Silencer

③ Flange

LST series Performance Graph

Theoretical charging time formula Reservoir tank x atm = TAL

TAL x Flow rate/sec=Sec

* Outlet pressure (Pb) = I·PI (Outlet Pressure = Compression ratio · Air drive)

Precautions for inlet liquids pressure

· Many variables when increasing pressure under high pressure Driven part – driven air pressure, flow rate High pressure part – inflow air pressure, feed rate Charging flow rate means average flow rate, which could be different on purpose.